Advanced Topics in Databases

- Active Databases
- Temporal and Spatial Database
- Deductive Databases
- Distributed Databases
- XML
- Data Mining
- Data Warehousing
- OLAP
- Mobile Databases
- Multimedia Databases
- GIS
- Genome Data Management
Active Databases

• Active Behavior = ability to react to events
• dimensions:
 • event
 • condition
 • action
 • execution model
 • management
• Application Areas
 • composite objects
 • integrity constraints, business rules
 • derived data
Temporal Databases

- A **temporal database** is a database management system with built-in time aspects, e.g. a temporal data model and a temporal version of structured query language.
- More specifically the temporal aspects usually include valid-time and transaction-time. These attributes go together to form bitemporal data.
- Valid time denotes the time period during which a fact is true with respect to the real world.
- Transaction time is the time period during which a fact is stored in the database.
Spatial Databases

• offers *spatial data types*
• supports *spatial indexing*
 • find all cities in Bavaria
• supports *spatial joins*
 • for each river, find all cities within 50 KM
• managing space → large collections of simple geometric objects
• 2D: geography (GIS), VLSI design
• 3D: astronomy, brain maps, molecules
Deductive Databases

• logic programming + persistence
• prolog → datalog
• facts and rules
• inference engine
Distributed Databases

- data and processing (server) reside on multiple computers
 - transparent replication/distribution
 - increased reliability and availability
 - improved performance
 - easier expansion
- federated database system
 - shared global schema
- multidatabase system
 - interactively constructs shared schema
Distributed Transactions

- ensuring transaction properties is difficult, since multiple machines are involved
- 2 phase commit:
 - phase 1:
 - coordinator sends “prepare to commit” to all participants
 - participants force-write all logs
 - participants indicate “ready to commit” or “cannot commit”
 - phase 2:
 - if all participants are ready to commit, coordinator sends commit command
 - if any participant cannot commit, coordinator sends abort command
Structured, semi-structured, unstructured data

• structured data: fits a predefined format
 • relation schema
 • Java class

• semi-structured data: structure is flexible, but can be described at any particular time
 • structure is embedded in the data
 • aka self-describing data

• unstructured data: no discernable structure
 • raw text
XML

- XML has become popular for dealing with semi-structured data
- creates a hierarchical structure
- schema may be embedded with data or separate
- allows for dynamic databases where structure changes more quickly than can be handled with schema modifications
- persistence and queries can be specialized for XML structures
 - XPATH, XQUERY
<?xml version="1.0" standalone="yes"?>
<projects>
 <project>
 <Name>ProductX</Name>
 <Number>1</Number>
 <Location>Bellaire</Location>
 <DeptNo>5</DeptNo>
 <Worker>
 <SSN>123456789</SSN>
 <LastName>Smith</LastName>
 <hours>32.5</hours>
 </Worker>
 <Worker>
 <SSN>453453453</SSN>
 <FirstName>Joyce</FirstName>
 <hours>20.0</hours>
 </Worker>
 </project>
 <project>
 <Name>ProductY</Name>
 <Number>2</Number>
 <Location>Sugarland</Location>
 <DeptNo>5</DeptNo>
 <Worker>
 <SSN>123456789</SSN>
 <hours>7.5</hours>
 </Worker>
 <Worker>
 <SSN>453453453</SSN>
 <hours>20.0</hours>
 </Worker>
 <Worker>
 <SSN>333445555</SSN>
 <hours>10.0</hours>
 </Worker>
 </project>
 ...
</projects>
Data Mining

• KDD: Knowledge Discovery in Databases
 • 1. data selection
 • 2. data cleansing
 • 3. enrichment
 • 4. data transformation or encoding
 • 5. data mining
 • 6. reporting
Data Mining

• Mining discovers
 • association rules
 • sequential patterns
 • classification hierarchies
 • patterns within time series
 • clustering

• Goals
 • prediction
 • identification
 • classification
 • optimization
Data Warehousing

• Data Warehouses are
 • very large
 • multi-dimensional (i.e. temporal)
 • not transactional
 • the result of KDD step 4
OLAP

- Online Analytic Processing
 - analysis of complex data from a data warehouse
 - makes use of the multi-dimensional structure of the warehouse
 - provides the tools to knowledge workers
Mobile Databases

• Issues:
 • data distribution and replication
 • transaction models
 • query processing – how to handle incomplete or unavailable information?
 • recovery and fault tolerance
 • security
Multimedia Databases

- Applications:
 - repositories
 - presentation
 - collaboration

- issues
 - modeling: complex objects with “hidden” semantics
 - indexing
 - storage: generally very large objects, not suitable for storage as records in files
 - queries and retrievals: what do we match, what should be returned
GIS

- Specialization of spatial database systems
 - also has temporal aspects
 - highly dependent on complex range queries
Genome Data Management

- data characteristics
 - highly complex
 - highly variable
 - rapidly changing schema
 - multiple representations of same data
 - generally read-only
 - most users are not database savvy
 - context dependent
 - representation of complex queries is important