Section 1.3

Rates of Change
If \(y \) is a function of \(t \), so \(y = f(t) \), then

\[
\text{Average rate of change of } y \text{ between } t = a \text{ and } t = b = \frac{\Delta y}{\Delta t} = \frac{f(b) - f(a)}{b - a}.
\]

The units of average rate of change of a function are units of \(y \) per unit of \(t \).

Figure 1.26

Figure 1.27
11. Table 1.10 shows the production of tobacco in the US.19

(a) What is the average rate of change in tobacco production between 1996 and 2003? Give units and interpret your answer in terms of tobacco production.

(b) During this seven-year period, is there any interval during which the average rate of change was positive? If so, when?

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\hline
Production & 1517 & 1787 & 1480 & 1293 & 1053 & 991 & 879 & 831 \\
\hline
\end{tabular}
\caption{Tobacco production, in millions of pounds}
\end{table}
A function f is **increasing** if the values of $f(x)$ increase as x increases. A function f is **decreasing** if the values of $f(x)$ decrease as x increases.

The graph of an increasing function **climbs** as we move from left to right. The graph of a decreasing function **descends** as we move from left to right.

The graph of a function is **concave up** if it bends upward as we move left to right; the graph is **concave down** if it bends downward. (See Figure 1.29.) A line is neither concave up nor concave down.
6. Identify the x-intervals on which the function graphed in Figure 1.33 is:

(a) Increasing and concave up
(b) Increasing and concave down
(c) Decreasing and concave up
(d) Decreasing and concave down

Problem 6
5. Table 1.9 gives values of a function $w = f(t)$. Is this function increasing or decreasing? Is the graph of this function concave up or concave down?

Table 1.9

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>100</td>
<td>58</td>
<td>32</td>
<td>24</td>
<td>20</td>
<td>18</td>
<td>17</td>
</tr>
</tbody>
</table>
Section 1.4

Applications of Functions to Economics
The **cost function**, $C(q)$, gives the total cost of producing a quantity q of some good.

If $C(q)$ is a linear cost function,
- Fixed costs are represented by the vertical intercept.
- Variable cost per unit is represented by the slope.

The **revenue function**, $R(q)$, gives the total revenue received by a firm from selling a quantity, q, of some good.
Profit = Revenue - Cost so $\pi = R - C$.

7. Figure 1.54 shows cost and revenue for a company.

(a) Approximately what quantity does this company have to produce to make a profit?
(b) Estimate the profit generated by 600 units.
The **supply curve**, for a given item, relates the quantity, \(q \), of the item that manufacturers are willing to make per unit time to the price, \(p \), for which the item can be sold. The **demand curve** relates the quantity, \(q \), of an item demanded by consumers per unit time to the price, \(p \), of the item.

Figure 1.47
Figure 1.48
• 1.4: 2, 3, 4, 5, 9, 19