Instantaneous Rate of Change
We throw a grapefruit straight upward into the air. Table 2.1 gives its height, y, at time t. What is the velocity of the grapefruit at exactly $t = 1$? We use average velocities to estimate this quantity.

**Table 2.1 ** *Height of the grapefruit above the ground*

<table>
<thead>
<tr>
<th>t (sec)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = s(t)$ (feet)</td>
<td>6</td>
<td>90</td>
<td>142</td>
<td>162</td>
<td>150</td>
<td>106</td>
<td>30</td>
</tr>
</tbody>
</table>

Average velocity between $t = 1$ and $t = 1.01$

$$\Delta v = \frac{\Delta y}{\Delta t} = \frac{s(1.01) - s(1)}{1.01 - 1} = \frac{90.678 - 90}{0.01} = 67.8 \text{ ft/sec}.$$
<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>0.9</th>
<th>0.99</th>
<th>0.999</th>
<th>1</th>
<th>1.001</th>
<th>1.01</th>
<th>1.1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = s(t)$</td>
<td>6.000</td>
<td>83.040</td>
<td>89.318</td>
<td>89.932</td>
<td>90.000</td>
<td>90.068</td>
<td>90.678</td>
<td>96.640</td>
<td>142.000</td>
</tr>
</tbody>
</table>

- Average velocity: 84 ft/sec
- Average velocity: 52 ft/sec
- Average velocity: 69.6 ft/sec
- Average velocity: 66.4 ft/sec
- Average velocity: 68.2 ft/sec
- Average velocity: 67.8 ft/sec
- Average velocity: 68.0 ft/sec
- Average velocity: 68.0 ft/sec

Figure 2.1
The **instantaneous velocity** of an object at time t is defined to be the limit of the average velocity of the object over shorter and shorter time intervals containing t.

The **instantaneous rate of change** of f at a, also called the **rate of change** of f at a, is defined to be the limit of the average rates of change of f over shorter and shorter intervals around a.

Example

Let \(f(x) = 0.15x^2 \).

1. Calculate the average rate of change in \(f \) over the interval from \(x = 2 \) to \(x = 5 \).

2. Estimate the instantaneous rate of change in \(f \) at \(x = 2 \) using intervals that get shorter and shorter around \(x = 2 \).
The derivative of f at a, written $f'(a)$, is defined to be the instantaneous rate of change of f at the point a.

Figure 2.2

The derivative of a function at the point A is equal to

- The slope of the graph of the function at A.
- The slope of the line tangent to the curve at A.

Figure 2.3
9. (a) The function \(f \) is given in Figure 2.13. At which of
the labeled points is \(f'(x) \) positive? Negative? Zero?
(b) At which labeled point is \(f' \) largest? At which la-
beled point is \(f' \) most negative?
17. Table 2.3 gives $P = f(t)$, the percent of households in the US with cable television t years since 1990.³

(a) Does $f'(6)$ appear to be positive or negative? What does this tell you about the percent of households with cable television?

(b) Estimate $f'(2)$. Estimate $f'(10)$. Explain what each is telling you, in terms of cable television.

<table>
<thead>
<tr>
<th>t (years since 1990)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (% with cable)</td>
<td>59.0</td>
<td>61.5</td>
<td>63.4</td>
<td>66.7</td>
<td>67.4</td>
<td>67.8</td>
<td>68.9</td>
</tr>
</tbody>
</table>

Problem 17
The table gives fictional data about farm land in the Central Valley. \(A \) is the number of acres of farm land (in millions) as a function of \(t \), years since 1980.

<table>
<thead>
<tr>
<th>(t), years since 1980</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>acres of farm land (in millions)</td>
<td>1000</td>
<td>960</td>
<td>930</td>
<td>910</td>
<td>900</td>
</tr>
</tbody>
</table>

1. Is the derivative positive or negative?
2. Estimate the \(A'(20) \).