Section 9.1

Understanding Functions of Two Variables
Table 9.1 Revenue from ticket sales as a function of x and y

<table>
<thead>
<tr>
<th>Number of discount tickets, y</th>
<th>Number of full price tickets, x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>75,000</td>
</tr>
<tr>
<td>400</td>
<td>115,000</td>
</tr>
<tr>
<td>600</td>
<td>155,000</td>
</tr>
<tr>
<td>800</td>
<td>195,000</td>
</tr>
<tr>
<td>1000</td>
<td>235,000</td>
</tr>
</tbody>
</table>

$R = 350x + 200y$.

Applied Calculus, 3/E by Deborah Hughes-Hallet
Copyright 2006 by John Wiley & Sons. All rights reserved.
$C(x, y) = x^2 - 3y$

- Use a table to investigate this function for $x = 0, 1, 2, 3$ and $y = 0, 1, 2, 3$.
- Use your calculator to sketch this function assuming y is a constant.
- Use your calculator to sketch this function assuming x is a constant.
Concentration of a Drug in the Blood

When a drug is injected into muscle tissue, it diffuses into the bloodstream. The concentration of the drug in the blood increases until it reaches a maximum, and then decreases. The concentration, \(C \) (in mg per liter), of the drug in the blood is a function of two variables: \(x \), the amount (in mg) of the drug given in the injection, and \(t \), the time (in hours) since the injection was administered. We are told that

\[
C = f(x, t) = te^{-t(5-x)} \quad \text{for } 0 \leq x \leq 4 \text{ and } t \geq 0.
\]

Example 3

In terms of the drug concentration in the blood, explain the significance of the cross-sections:

(a) \(f(4, t) \)
(b) \(f(x, 1) \)
5. The balance, B, in dollars, in a bank account depends on the amount deposited, A dollars, the annual interest rate, $r\%$, and the time, t, in months since the deposit, so $B = f(A, r, t)$.

(a) Is f an increasing or decreasing function of A? Of r? Of t?
(b) Interpret the statement $f(1250, 1, 25) \approx 1276$. Give units.

Problem 5
Section 9.2

Contour Diagrams
1. Figure 9.20 shows contour diagrams of temperature in °C in a room at three different times. Describe the heat flow in the room. What could be causing this?
7. Figure 9.25 is a contour diagram of the monthly payment on a 5-year car loan as a function of the interest rate and the amount you borrow. The interest rate is 13% and you borrow $6000.

(a) What is your monthly payment?
(b) If interest rates drop to 11%, how much more can you borrow without increasing your monthly payment?
(c) Make a table of how much you can borrow, without increasing your monthly payment, as a function of the interest rate.

Problem 7
27. Match tables (a)–(d) with the contour diagrams (I)–(IV) in Figure 9.31.

Problem 27 (a) (Contour diagrams on next slide)
Problem 27 (b) (continued)
An antibiotic is given to a patient. The percentage of the dose excreted, P, is a function of glomerular filtration rate (GFR), in ml/min, and time, in hours.

1. If a patient has GFR = 30 ml/min, how long will it take to excrete 20% of a dose?
2. If the patient has GFR = 30 ml/min, how long will it take?
3. Is P an increasing or decreasing function of time?
4. Is P an increasing or decreasing function of GFR?
Section 9.3

Partial Derivatives
Partial Derivatives of f With Respect to x and y

The **partial derivative of f with respect to x** at (a, b) is the derivative of f with y constant:

$$f_x(a, b) = \text{Rate of change of } f \text{ with } y \text{ fixed at } b, \text{ at the point } (a, b) = \lim_{{h \to 0}} \frac{f(a + h, b) - f(a, b)}{h}.$$

The **partial derivative of f with respect to y** at (a, b) is the derivative of f with x constant:

$$f_y(a, b) = \text{Rate of change of } f \text{ with } x \text{ fixed at } a, \text{ at the point } (a, b) = \lim_{{h \to 0}} \frac{f(a, b + h) - f(a, b)}{h}.$$

If we think of a and b as variables, $a = x$ and $b = y$, we have the **partial derivative functions** $f_x(x, y)$ and $f_y(x, y)$.

Alternative Notation for Partial Derivatives

If $z = f(x, y)$ we can write

$$f_x(x, y) = \frac{\partial z}{\partial x} \quad \text{and} \quad f_y(x, y) = \frac{\partial z}{\partial y}$$

$$f_x(a, b) = \left. \frac{\partial z}{\partial x} \right|_{(a, b)} \quad \text{and} \quad f_y(a, b) = \left. \frac{\partial z}{\partial y} \right|_{(a, b)}$$
Table 9.3.1 gives $H =$ temperature in °F at time t minutes since noon on a certain day. If $H = f(t)$, estimate $f'(10)$. What are the units of this derivative? What is its meaning?

<table>
<thead>
<tr>
<th>t (min)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (°F)</td>
<td>60</td>
<td>65</td>
<td>68</td>
<td>70</td>
</tr>
</tbody>
</table>

Table 9.3.2 gives values of $H = g(x, t)$.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>72</td>
<td>75</td>
<td>80</td>
<td>84</td>
</tr>
<tr>
<td>200</td>
<td>67</td>
<td>72</td>
<td>76</td>
<td>80</td>
</tr>
<tr>
<td>300</td>
<td>60</td>
<td>65</td>
<td>68</td>
<td>70</td>
</tr>
<tr>
<td>400</td>
<td>53</td>
<td>59</td>
<td>64</td>
<td>66</td>
</tr>
</tbody>
</table>
9. The sales of a product, \(S = f(p, a) \), is a function of the price, \(p \), of the product (in dollars per unit) and the amount, \(a \), spent on advertising (in thousands of dollars).

(a) Do you expect \(f_p \) to be positive or negative? Why?
(b) Explain the meaning of the statement \(f_a(8, 12) = 150 \) in terms of sales.

Problem 9
11. Figure 9.42 shows a contour diagram for the monthly payment P as a function of the interest rate, $r\%$, and the amount, L, of a 5-year loan. Estimate $\partial P/\partial r$ and $\partial P/\partial L$ at the point where $r = 8$ and $L = 5000$. Give the units and the financial meaning of your answers.
Change in f \approx \text{Rate of change in } x\text{-direction} \cdot \Delta x + \text{Rate of change in } y\text{-direction} \cdot \Delta y

\[\Delta f \approx f_x \cdot \Delta x + f_y \cdot \Delta y \]

17. For a function $f(r, s)$, we are given $f(50, 100) = 5.67$, and $f_r(50, 100) = 0.60$, and $f_s(50, 100) = -0.15$. Estimate $f(52, 108)$.
Section 9.4

Computing Partial Derivatives Algebraically
3. f_x and f_y if $f(x, y) = 2x^2 + 3y^2$

5. $\frac{\partial P}{\partial r}$ if $P = 100e^{rt}$

9. z_x if $z = x^2y + 2x^5y$
The Second-Order Partial Derivatives of $z = f(x, y)$

\[
\frac{\partial^2 z}{\partial x^2} = f_{xx} = (f_x)_x, \quad \frac{\partial^2 z}{\partial x \partial y} = f_{yx} = (f_y)_x, \\
\frac{\partial^2 z}{\partial y \partial x} = f_{xy} = (f_x)_y, \quad \frac{\partial^2 z}{\partial y^2} = f_{yy} = (f_y)_y.
\]
If f_{xy} and f_{yx} are continuous at (a, b), then

$$f_{xy}(a, b) = f_{yx}(a, b).$$
Section 9.5

Critical Points and Optimization
● f has a **local maximum** at P_0 if $f(P_0) \geq f(P)$ for all points P near P_0
• \(f \) has a **local maximum** at \(P_0 \) if \(f(P_0) \geq f(P) \) for all points \(P \) near \(P_0 \)

• \(f \) has a **local minimum** at \(P_0 \) if \(f(P_0) \leq f(P) \) for all points \(P \) near \(P_0 \)
- f has a **local maximum** at P_0 if $f(P_0) \geq f(P)$ for all points P near P_0
- f has a **local minimum** at P_0 if $f(P_0) \leq f(P)$ for all points P near P_0
- f has a **global maximum** at P_0 if $f(P_0) \geq f(P)$ for all points P in \mathbb{R}
• f has a **local maximum** at P_0 if $f(P_0) \geq f(P)$ for all points P near P_0
• f has a **local minimum** at P_0 if $f(P_0) \leq f(P)$ for all points P near P_0
• f has a **global maximum** at P_0 if $f(P_0) \geq f(P)$ for all points P in \mathbb{R}
• f has a **global minimum** at P_0 if $f(P_0) \leq f(P)$ for all points P in \mathbb{R}
Table 9.9 gives a table of values for a function $f(x, y)$. Estimate the location and value of any global maxima or minima for $0 \leq x \leq 1$ and $0 \leq y \leq 20$.

<table>
<thead>
<tr>
<th>y</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80</td>
<td>86</td>
<td>91</td>
<td>87</td>
<td>82</td>
</tr>
<tr>
<td>0.2</td>
<td>84</td>
<td>90</td>
<td>95</td>
<td>91</td>
<td>86</td>
</tr>
<tr>
<td>0.4</td>
<td>82</td>
<td>88</td>
<td>93</td>
<td>89</td>
<td>84</td>
</tr>
<tr>
<td>0.6</td>
<td>76</td>
<td>73</td>
<td>88</td>
<td>84</td>
<td>79</td>
</tr>
<tr>
<td>0.8</td>
<td>71</td>
<td>77</td>
<td>77</td>
<td>78</td>
<td>73</td>
</tr>
<tr>
<td>1.0</td>
<td>65</td>
<td>71</td>
<td>71</td>
<td>72</td>
<td>67</td>
</tr>
</tbody>
</table>

Solution

The global maximum value of the function appears to be 95 at the point $(0.2, 10)$. Since the table only gives certain values, we cannot be sure that this is exactly the maximum. (The function might have a larger value at, for example, $(0.3, 11)$.) The global minimum value of this function on the points given is 65 at the point $(1, 0)$.

Example 1
Figure 9.49 gives a contour diagram for a function \(f(x, y) \). Estimate the location and value of any local maxima or minima. Are any of these global maxima or minima on the square shown?

Solution

There is a local maximum of above 8 near the point \((6, 5)\), a local maximum of above 6 near the point \((2, 6)\), and a local minimum of below 3 near the point \((3, 2)\). The value above 8 is the global maximum and the value below 3 is the global minimum on the given domain.

Example 2
If a function $f(x, y)$ has a local maximum or minimum at a point (x_0, y_0) not on the boundary of the domain of f, then either

$$f_x(x_0, y_0) = 0 \quad \text{and} \quad f_y(x_0, y_0) = 0$$

or (at least) one partial derivative is undefined at the point (x_0, y_0). Points where each of the partial derivatives is either zero or undefined are called **critical points**.

Example 3

Find and analyze the critical points of $f(x, y) = x^2 - 2x + y^2 - 4y + 5$.

Solution

To find the critical points, we set both partial derivatives equal to zero:

$$f_x(x, y) = 2x - 2 = 0,$$
$$f_y(x, y) = 2y - 4 = 0.$$

Solving these equations gives $x = 1$ and $y = 2$. Hence, f has only one critical point, namely $(1, 2)$. What is the behavior of f near $(1, 2)$? The values of the function in Table 9.10 suggest that the function has a local minimum value of 0 at the point $(1, 2)$.

Click for Table 9.10
Table 9.10 \quad \textit{Values of } f(x, y) \textit{ near the point } (1, 2) \\

<table>
<thead>
<tr>
<th></th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>0.08</td>
<td>0.05</td>
<td>0.04</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>1.9</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>2.0</td>
<td>0.04</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>2.1</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>2.2</td>
<td>0.08</td>
<td>0.05</td>
<td>0.04</td>
<td>0.05</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Second Derivative Test for Functions of Two Variables
Suppose \((x_0, y_0)\) is a critical point where \(f_x(x_0, y_0) = f_y(x_0, y_0) = 0\). Let

\[
D = f_{xx}(x_0, y_0)f_{yy}(x_0, y_0) - f_{xy}(x_0, y_0)^2.
\]

- If \(D > 0\) and \(f_{xx}(x_0, y_0) > 0\), then \(f\) has a local minimum at \((x_0, y_0)\).
- If \(D > 0\) and \(f_{xx}(x_0, y_0) < 0\), then \(f\) has a local maximum at \((x_0, y_0)\).
- If \(D < 0\), then \(f\) has neither a local maximum or minimum at \((x_0, y_0)\).
- If \(D = 0\), the test is inconclusive.

5. \(f(x, y) = x^2 + xy + 3y\)